
Before we begin, visit https://github.com/
radanalyticsio/workshop to download images
and code!

https://github.com/radanalyticsio/workshop
https://github.com/radanalyticsio/workshop
https://github.com/radanalyticsio/workshop

Insightful Apps with Apache
Spark and OpenShift

William Benton (@willb)
Michael McCune (@FOSSJunkie)

Forecast
Introducing insightful apps

Learning from data

Meet Apache Spark

Hands-on: data engineering and machine learning in Spark and building an
insightful application in OpenShift

Preliminaries
Make sure you have OpenShift Origin installed (if you want to build an app)
or at least Docker (if you just want to try out Apache Spark)

Pull all of the necessary images for the hands-on portion

Details here: https://github.com/radanalyticsio/workshop

https://github.com/radanalyticsio/workshop

Introducing insightful apps

Insightful applications
Insightful applications collect and learn from data that users generate and
provide in order to work better with longevity and popularity.

Almost every exciting or important contemporary app is insightful!

Learning from data

BASIC CONCEPTS

def classify(bike):
 if bar_type(bike) == "flat":
 if tire_width(bike) > 80:
 return "winter bike"
 if tire_width(bike) > 50 or has_suspension(bike):
 return "mountain bike"
 if frame_type(bike) == "step-through":
 return "city bike"
 elif bar_type(bike) == "drop":
 if tire_width(bike) <= 27:
 return "road bike"
 if tire_type(bike) == "knobby":
 return "cyclocross bike"
 return "touring bike"
 return "unknown bike"

def classify(bike):
 if bar_type(bike) == "flat":
 if tire_width(bike) > 80:
 return "winter bike"
 if tire_width(bike) > 50 or has_suspension(bike):
 return "mountain bike"
 if frame_type(bike) == "step-through":
 return "city bike"
 elif bar_type(bike) == "drop":
 if tire_width(bike) <= 27:
 return "road bike"
 if tire_type(bike) == "knobby":
 return "cyclocross bike"
 return "touring bike"
 return "unknown bike"

road bike

cyclocross bike

touring bike

mountain bike

def classify(bike):
 if bar_type(bike) == "flat":
 if tire_width(bike) > 80:
 return "winter bike"
 if tire_width(bike) > 50 or has_suspension(bike):
 return "mountain bike"
 if frame_type(bike) == "step-through":
 return "city bike"
 elif bar_type(bike) == "drop":
 if tire_width(bike) <= 27:
 return "road bike"
 if tire_type(bike) == "knobby":
 return "cyclocross bike"
 return "touring bike"
 return "unknown bike"

road bike

cyclocross bike

touring bike

mountain bike

def classify(bike):
 if bar_type(bike) == "flat":
 if tire_width(bike) > 80:
 return "winter bike"
 if tire_width(bike) > 50 or has_suspension(bike):
 return "mountain bike"
 if frame_type(bike) == "step-through":
 return "city bike"
 elif bar_type(bike) == "drop":
 if tire_width(bike) <= 27:
 return "road bike"
 if tire_type(bike) == "knobby":
 return "cyclocross bike"
 return "touring bike"
 return "unknown bike"

road bike

cyclocross bike

touring bike

mountain bike

triathlon bike

Feature engineering

Feature engineering

mountain bike 0 1 60 1 1 1

Feature engineering

mountain bike 0 1 60 1 1 1

LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE
LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

TIRE
KNOBS

LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

Feature engineering

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

cyclocross bike 1 0 33 1 0 0

one-hot
encoding

mountain bike 0 1 60 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

cyclocross bike 1 0 33 1 0 0

(convert from a categorical feature with n values to an n-bit vector)

value
scaling

mountain bike 0 1 0.35 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

cyclocross bike 1 0 0.13 1 0 0

(assuming that all tires are between 19mm and 130mm wide)

Approximation techniques

Approximation techniques

Approximation techniques

Approximation techniques

Feature hashing

0 0 0 0 0 … 0 0 0 0 0

A a aa aal aalii zythem Zythia zythum Zyzomys Zyzzogeton

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

"the" → (37, 1)
"quick" → (121, -1)
"brown" → (50, -1)

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

"the" → (37, 1)
"quick" → (121, -1)
"brown" → (50, -1)
"fox" → (71, 1)

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

"the" → (37, 1)
"quick" → (121, -1)
"brown" → (50, -1)
"fox" → (71, 1)
"jumps" → (39, 1)

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 0 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

"the" → (37, 1)
"quick" → (121, -1)
"brown" → (50, -1)
"fox" → (71, 1)
"jumps" → (39, 1)
"over" → (100, -1)
"the" → (37, 1)

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 1 0 1 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

"the" → (37, 1)
"quick" → (121, -1)
"brown" → (50, -1)
"fox" → (71, 1)
"jumps" → (39, 1)
"over" → (100, -1)
"the" → (37, 1)
"lazy" → (120, -1)
"dog" → (54, 1)

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 -1 0 0 0 0 0 0

"the" → (37, 1)
"quick" → (121, -1)
"brown" → (50, -1)
"fox" → (71, 1)
"jumps" → (39, 1)
"over" → (100, -1)
"the" → (37, 1)
"lazy" → (120, -1)
"dog" → (54, 1)

Feature hashing
def hash_bucket(s):
 """ Assumes the existence of an external hash function.
 Returns a tuple of
 * a bucket (from 0-127, inclusive) and
 * a sign value (either +1 or -1). """
 raw_hash = my_hash(s) & 0xFF
 sign = (raw_hash & 0x80) != 0 and -1 or 1
 bucket = raw_hash & ~0x80
 return (bucket, sign)

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 2 0 1 0 0 0 0 0 0 0 0

0 0 -1 0 0 0 1 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 -1 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 -1 -1 0 0 0 0 0 0

CLASSIFICATION

CLUSTERING

RECOMMENDATION

?

OUTLIER DETECTION

map tiles by Stamen Design (CC-BY 3.0) • map data © OpenStreetMap

map tiles by Stamen Design (CC-BY 3.0) • map data © OpenStreetMap

map tiles by Stamen Design (CC-BY 3.0) • map data © OpenStreetMap

map tiles by Stamen Design (CC-BY 3.0) • map data © OpenStreetMap

map tiles by Stamen Design (CC-BY 3.0) • map data © OpenStreetMap

UNDERSTANDING DATA WITH  
MANY DIMENSIONS

[4,7]

[4,7]

[4,7] [2,3,5]

[4,7] [2,3,5]

[4,7] [2,3,5]
[7,1,6,5,12, 
8,9,2,2,4,
7,11,6,1,5]

[4,7] [2,3,5]
[7,1,6,5,12, 
8,9,2,2,4,
7,11,6,1,5]

Similarity and distance

Similarity and distance

Similarity and distance

(q - p) • (q - p)

Similarity and distance

pi - qi

i=1

n

Similarity and distance

pi - qi

i=1

n

Similarity and distance

p • q
p q

Similarity and distance

Similarity and distance

Similarity and distance

Similarity and distance

10

10

3=.7

Eliminating inessential features

mountain bike 0 1 0.35 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

cyclocross bike 1 0 0.13 1 0 0

Eliminating inessential features

mountain bike 0 1 0.35 1 1 1

HANDLEBAR TYPE

DROP FLAT
TIRE
SIZE

SUSPENSION?

TIRE
KNOBS

FRONT REAR
LABEL

cyclocross bike 1 0 0.13 1 0 0

Very simple: random projection
0 0 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 1

0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 1 1 0

0 0 1 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 1

1 1 0 0 0 0 0 0 0 1

Very simple: random projection
0 0 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 1

0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 1 1 0

0 0 1 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 1

1 1 0 0 0 0 0 0 0 1

0.13 0.13

0.06 0.07

0.07 0.06

0.02 0.08

0.17 0.11

0.11 0.09

0.04 0.18

0.13 0.04

0.13 0.21

0.14 0.03

*

Very simple: random projection
0 0 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 1

0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 1 1 0

0 0 1 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 1

1 1 0 0 0 0 0 0 0 1

0.13 0.13

0.06 0.07

0.07 0.06

0.02 0.08

0.17 0.11

0.11 0.09

0.04 0.18

0.13 0.04

0.13 0.21

0.14 0.03

* =

A linear approach: PCA
0 0 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 1

0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 1 1 0

0 0 1 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 1

1 1 0 0 0 0 0 0 0 1

A linear approach: PCA
0 0 0 1 1 0 1 0 1 0

0 0 1 0 0 0 1 1 0 0

1 0 1 1 0 1 0 0 0 0

0 0 0 0 0 0 1 1 0 1

0 1 0 0 1 0 0 1 0 0

1 0 0 0 0 1 0 1 1 0

0 0 1 0 1 0 1 0 0 0

0 1 0 0 0 1 0 0 1 1

0 0 0 0 1 0 0 1 0 1

1 1 0 0 0 0 0 0 0 1

A nonlinear approach: t-SNE

A nonlinear approach: t-SNE

p(|)

p(|)≈

A nonlinear approach: t-SNE

p(|)

Tree-based approaches

Tree-based approaches

yes

no

yes

no

if orange

if !orange

if red

if !red

if !gray

if !gray

Tree-based approaches

yes

no

yes

no

if orange

if !orange

if red

if !red

if !gray

if !gray

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

Tree-based approaches

yes

no

yes

no

if orange

if !orange

if red

if !red

if !gray

if !gray

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

yes

no

no

yes

yes

no

yes

no

Self-organizing maps

Self-organizing maps

Self-organizing maps

Self-organizing maps

Self-organizing maps

https://github.com/radanalyticsio/silex

https://github.com/radanalyticsio/silex

Meet Apache Spark

A FUNDAMENTAL ABSTRACTION,
NOT AN EXECUTION MODEL

Resilient Distributed Datasets are
partitioned, lazy, and immutable
homogeneous collections.

1 2 3

1 2 3 λ x: x % 2 != 0

FILTER

1 2 3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

1 2 3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

λ x: [x, x+1]

FLATMAP

3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

λ x: [x, x+1]

FLATMAP

3 4 9 10
COLLECT

1 2 3

1 2 3 λ x: x % 2 != 0

FILTER

2 3 λ x: x % 2 != 0

FILTER

2 3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

2 3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

λ x: [x, x+1]

FLATMAP

2 3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

λ x: [x, x+1]

FLATMAP

3 4 9 10
SAVE AS TEXT FILE

2 3 λ x: x % 2 != 0 λ x: x * 3

FILTER MAP

λ x: [x, x+1]

FLATMAP

3 4 9 10
SAVE AS TEXT FILE

CACHE

executor1

1 2 3

executorn

10 11 12

cluster
manager

driver

executor1

1 2 3

executorn

10 11 12

cluster
manager

2 4 6 20 22 24

λ x: x * 2 λ x: x * 2

driver

executor1

1 2 3

executorn

10 11 12

cluster
manager

2 4 6 20 22 24

λ x: x * 2 λ x: x * 2

driver

CACHECACHE

Example: word count
file = sc.textFile("file://...")

counts = file.flatMap(lambda l: l.split(" "))
 .map(lambda w: (w, 1))
 .reduceByKey(lambda x, y: x + y)

computation actually occurs here
counts.saveAsTextFile("file://...")

Example: word count
file = sc.textFile("file://...")

counts = file.flatMap(lambda l: l.split(" "))
 .map(lambda w: (w, 1))
 .reduceByKey(lambda x, y: x + y)

computation actually occurs here
counts.saveAsTextFile("file://...")

Example: word count
file = sc.textFile("file://...")

counts = file.flatMap(lambda l: l.split(" "))
 .map(lambda w: (w, 1))
 .reduceByKey(lambda x, y: x + y)

computation actually occurs here
counts.saveAsTextFile("file://...")

Example: word count
file = sc.textFile("file://...")

counts = file.flatMap(lambda l: l.split(" "))
 .map(lambda w: (w, 1))
 .reduceByKey(lambda x, y: x + y)

computation actually occurs here
counts.saveAsTextFile("file://...")

Example: word count
file = sc.textFile("file://...")

counts = file.flatMap(lambda l: l.split(" "))
 .map(lambda w: (w, 1))
 .reduceByKey(lambda x, y: x + y)

computation actually occurs here
counts.saveAsTextFile("file://...")

Example: word count
file = sc.textFile("file://...")

counts = file.flatMap(lambda l: l.split(" "))
 .map(lambda w: (w, 1))
 .reduceByKey(lambda x, y: x + y)

computation actually occurs here
counts.saveAsTextFile("file://...")

BEYOND THE RDD

Spark core

Spark core

Graph SQL ML Streaming

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARN

Spark core

Graph SQL ML Streaming

ad hoc Mesos YARNk8s

Machine learning with Spark
Support code for feature engineering and learning pipelines.

Many parallel implementations of classic algorithms for machine learning
tasks: dimensionality reduction, classification, regression, clustering,
recommendation engines, etc.

Parallel optimization primitives (gradient descent, etc.) and linear algebra
to implement your own algorithms.

Streaming data
Goal: use the same abstraction for batch and “streaming” (micro-batch)
data by dividing a stream into many small RDDs.

input stream

Streaming data
Goal: use the same abstraction for batch and “streaming” (micro-batch)
data by dividing a stream into many small RDDs.

Streaming
engine

input stream

Streaming data
Goal: use the same abstraction for batch and “streaming” (micro-batch)
data by dividing a stream into many small RDDs.

Streaming
engine

input stream
windowed
data (RDDs)

Streaming data
Goal: use the same abstraction for batch and “streaming” (micro-batch)
data by dividing a stream into many small RDDs.

Streaming
engine Spark

input stream
windowed
data (RDDs)

Streaming data
Goal: use the same abstraction for batch and “streaming” (micro-batch)
data by dividing a stream into many small RDDs.

Streaming
engine Spark

input stream
windowed
data (RDDs)

processed
data (RDDs)

Structured queries
The capacity to run arbitrary code in RDDs is powerful but comes with an
important tradeoff: Spark can’t rearrange RDD programs to improve their
performance.

Writing Spark programs with a query DSL allows Spark to generate
optimized execution plans.

Query planning
hugeCollection
 .join(anotherHugeCollection)
 .filter(lambda (n, (a, b)): ultraRare(a) and ultraRare(b))

Query planning

hugeCollection.filter(lambda a: ultraRare(a))
 .join(anotherHugeCollection.filter(lambda a: ultraRare(a)))

hugeCollection
 .join(anotherHugeCollection)
 .filter(lambda (n, (a, b)): ultraRare(a) and ultraRare(b))

Structured query in Spark
SQL interface (unchecked syntax or semantics) 
SELECT word, COUNT(*) FROM words GROUP BY word

Data frame interface (semantics checked at run-time) 
words.groupBy('word').count()

Dataset interface (mostly checked at compile-time)

Questions & hands-on exercises

