Tutorials

These tutorials have been designed to showcase technologies and design patterns that can be used to begin creating intelligent applications on OpenShift. We have split them into two broad categories: examples and applications.

Applications are fully integrated packages which illustrate how an idea, methodology or technology can be developed and deployed on OpenShift in a manner that users can experience the underlying analytics in a more convenient manner.

Examples are small code samples or notebook workflows that demonstrate how you can integrate a specific technology or technique into your projects. They are separated from the concept of fitting into a user experience and speak to architects, developers and technologists.

All of these tutorials contain instructions for installation and usage as well as open source code artifacts that you are welcome to clone and use in your own projects and presentations. Some of these tutorials also contain videos and slide decks that can be helpful when presenting or demonstrating them to your peers and colleagues.

Applications

Ophicleide Python MongoDB

Ophicleide is an application that can ingest text data from URL sources and process it with Word2vec to create data models. These resulting models can be then queried for word similarity. It contains a REST based training server and a browser based front end for user interaction.

Fabric8 Maven Plugin Example Java Kafka

This demo shows how to use the Fabric8 Maven Plugin to deploy a Spark cluster on Openshift.

jGraf Zahl Java Kafka S2I

jGraf Zahl is a Java implementation of the Graf Zahl application. It is a demonstration of using Spark's Structured Streaming feature to read data from an Apache Kafka topic. It presents a web UI to view the top-k words found on the topic.

Graf Zahl Python Kafka S2I

Graf Zahl is a demonstration application using Spark's Structured Streaming feature to read data from an Apache Kafka topic. It presents a web UI to view the top-k words found on the topic.

Spring Boot SparkPi Java S2I

This source-to-image Java application combines the Apache Spark Pi estimation example with the popular Spring Boot framework. It provides an HTTP microservice which will calculate the value of Pi on demand.

Tensorflow MNIST Tensorflow S2I

This demo shows how to use source-to-image Tensorflow Serving build to deploy a tensorflow serving prediction endpoint on Openshift. The s2i build provides a GRPC microservice endpoint for web applications to send queries to be evaluated against the tensorflow model.

Examples

Value-at-risk notebook Python Jupyter

The value-at-risk notebook is a simple example of how to run Jupyter notebooks on OpenShift, Monte Carlo simulations in Spark, and how to interactively explore data to find better ways to model it.

PySpark HDFS Notebook Python HDFS Jupyter

This is a very simple Jupyter notebook application which runs on OpenShift. It shows how to read a file from a remote HDFS filesystem with PySpark.

Ceph Source Example Python Ceph S3 Jupyter

This is an example of how to connect your application to data in Ceph using S3 API.

AMQP - Spark Streaming Scala ActiveMQ

This demo shows how it's possible to integrate AMQP based products with Apache Spark Streaming. It uses the AMQP Spark Streaming connector, which is able to get messages from an AMQP source and pushing them to the Spark engine as micro batches for real time analytics

S3 Source Example Python S3 Jupyter

This is an example of how to connect your application to data in S3.

Blockchain Analysis Notebook Python Jupyter spark-notebook

These blockchain notebooks are examples of how to explore graph data using GraphX and GraphFrames on top of OpenShift using Apache Spark. It uses the real Bitcoin blockchain data to create a transaction graph for the analysis.